Visualizing eleven dimensions -bilingual-

dimarts , 23/04/2019

In this talk Thad Roberts reveals a theory that could prove to be the key in simplification of the various complexities of quantum mechanics, space, and time.

TRANSCRIPT

Does anybody here happen to be interested ¿Hay alguien aquí interesado
in other dimensions? en otras dimensiones?
(Applause) (Aplausos)
Alright. Bien.
Well, thank you all for your time… Bueno, gracias a todos por su tiempo…
and your space. y por su espacio.
(Laughter) (Risas)
Good, I’m glad that one worked here. Bien, qué bien que eso funcionó
Alright. Bien.
Imagine a world Imaginen un mundo cuyos
whose inhabitants live and die habitantes viven y mueren
believing only in the existence creyendo sólo en la existencia
of two spatial dimensions. de dos dimensiones espaciales.
A plane. Un avión. Estos Flatlanders
These Flatlanders are going to see (habitantes de un universo con dos dimensiones espaciales)
some pretty strange things happen; verán ocurrir algunas cosas bastante raras:
things that are impossible to explain cosas imposibles de explicar dentro
within the constraints of their geometry. de los confines de su geometría.
For example, imagine that one day, Por ejemplo, imaginen que un día,
some Flatlander scientists observe this: algunos científicos “flatlander” ven esto:
A set of colorful lights un juego de luces de colores
that appear to randomly appear que aparecen aleatoriamente
in different locations along the horizon. en distintos lugares a lo largo del horizonte.
No matter how hard they try No importa cúan arduo intenten
to make sense of these lights, darle sentido a estas luces,
they’ll be unable to come up no podrán llegar a una teoría
with a theory that can explain them. que pueda explicarlas.
Some of the more clever scientists Algunos de los científicos más listos
might come up with a way podrían haber resuelto una manera de describir
to probabilistically describe the flashes. estos destellos de forma probabilística.
For example, for every 4 seconds, Por ejemplo, cada 4 segundos,
there’s 11% chance that a red flash hay un 11% de probabilidad de que
will occur somewhere on the line. un destello rojo ocurra en algún lugar de la línea.
But no Flatlander will be able Pero ningún flatlander podrá
to determine exactly when determinar exactamente cuándo o
or where the next red light will be seen. dónde se verá la próxima luz roja.
As a consequence, they start to think Como una consecuencia, empezaron a pensar
that the world contains que el mundo contenía
a sense of indeterminacy, un sentido de indeterminación,
that the reason que la razón por la que
these lights cannot be explained, estas luces no pueden explicarse.
is that at the fundamental level es que en el nivel fundamental,
nature just doesn’t make sense. la naturaleza simplemente no tiene sentido.
Are they right? ¿Están en lo cierto? ¿Acaso el hecho
Does the fact that they were forced de que se vieron forzados
to describe these lights probabilistically en describir estas luces probabilísticamente
actually mean that en realidad significa que
the world is indeterministic? el mundo es indeterminista?
The lesson we can learn from Flatland La lección que podemos aprender de los “Flatland”
is that when we assume only es que cuando suponemos sólo una parte
a portion of nature’s full geometry, de la geometría completa de la naturaleza,
deterministic events can appear eventos deterministas pueden aparecer
fundamentally indeterministic. fundamentalmente indeterministas.
However, when we expand our view Sin embargo, cuando
and gain access expandemos nuestra visión
to the full geometry of the system, y ganamos acceso a la geometría completa del sistema,
indeterminacy disappears. la indeterminación desaparece.
As you can see, we can now Como pueden ver, ahora podemos
determine exactly when and where determinar exactamente cuándo y dónde
the next red light la siguiente luz roja
will be seen on this line. se verá en la línea.
We are here tonight Estamos aquí esta noche
to consider the possibility para considerar la posibilidad de
that we are like the Flatlanders. que somos como los flatlanders.
Because, as it turns out, Porque, como resulta, nuestro mundo
our world is riddled with mysteries está plagado de enigmáticos misterios
that just don’t seem to fit inside que simplemente no parecen ajustarse a
the geometric assumptions we have made. las supuestos geométricos que hemos hecho.
Mysteries like warped space-time, Misterios como espacio tiempo deformado,
black holes, quantum tunneling agujeros negros, túneles cuánticos,
the constants of nature, las constantes de la naturaleza,
dark matter, dark energy, etc. materia y energía oscuras, etc.
The list is quite long. La lista es bastante larga.
How do we respond to these mysteries? ¿Cómo respondemos a estos misterios?
Well, we have two choices: Bueno, tenemos dos opciones:
We can either cling podemos ya sea aferrarnos a
to our previous assumptions, nuestras suposiciones previas
and invent new equations e inventar nuevas ecuaciones que existen
that exist somehow outside of the metric, de alguna forma afuera de lo métrico,
as a vague attempt como un vago intento de
to explain what’s going on, explicar lo que está pasando,
or we could take a bolder step, o podemos dar un paso más audaz,
throw out our old assumptions, desechando nuestros viejos supuestos
and construct a new blueprint for reality. y construir un nuevo anteproyecto de la realidad.
One that already includes Uno que incluya
those phenomena. estos fenómenos.
It’s time to take that step. Es hora de dar ese paso.
Because we are in the same situation Porque estamos en la misma
as the Flatlanders. situación que los flatlanders.
The probabilistic nature La naturaleza probabilística
of quantum mechanics de la mecánica cuántica
has our scientists believing tienen a nuestros científicos en la creencia
that deep down, muy en el fondo, que
the world is indeterminant. el mundo es indeterminado.
That the closer we look, Entre más cerca miremos,
the more we will find más averiguaremos que
that nature just doesn’t make sense. la naturaleza no tiene sentido.
Hmm… Mmhh…
Perhaps all of these mysteries Quizá lo que todas estos misterios
are actually telling us nos están diciendo en realidad
that there’s more to the picture. que hay más de lo que vemos en el cuadro.
That nature has a richer geometry Que la naturaleza tiene una geometría
than we have assumed. más abundante de la que suponemos.
Maybe the mysterious phenomena Quizá los fenómenos
in our world misteriosos de nuestro mundo
could actually be explained se pueden en efecto explicar
by a richer geometry, con una geometría más abundante
with more dimensions. con más dimensiones.
This would mean that we are stuck Esto quiere decir que estamos atrapados
in our own version of Flatland. en nuestra propia versión de ‘llanura’.
And if that’s the case, Y si ese es el caso,
how do we pop ourselves out? ¿cómo salimos?
At least conceptually? ¿Al menos conceptualmente?
Well, the first step is to make sure Bueno, el primer paso es asegurarnos que
that we know exactly what a dimension is. sabemos exactamente qué es una dimensión.
A good question to start with is: Una buena pregunta para empezar es:
What is it about x, y and z ¿Qué tienen X, Y y Z que
that makes them spatial dimensions? las hacen dimensiones espaciales?
The answer is that a change in position La respuesta es que un cambio
in one dimension en posición en una dimensión
does not imply a change in position no implica un cambio de
in the other dimensions. posición en las otras dimensiones.
Dimensions are independent descriptors Las dimensiones son descriptores
of position. independientes de posición.
So z is a dimension because an object Así Z es una dimensión porque un objeto
can be holding still in x and y se puede mantener quieto en X y Y
while it’s moving in Z. mientras se mueve en Z.
So, to suggest that Entonces para proponer que
there are other spatial dimensions hay otras dimensiones espaciales
is to say that it must be possible es decir que debe ser
for an object posible para un objeto
to be holding still in x, y and z, mantenerse quieto en X, Y y Z,
yet still moving about y aún así moverse en
in some other spatial sense. algún otro sentido espacial.
But where might these ¿Pero en donde podrían
other dimensions be? estar estas otras dimensiones?
To solve that mystery, Para resolver ese misterio,
we need to make a fundamental adjustment necesitamos hacer un ajuste fundamental
to our geometric assumptions about space. de nuestros supuestos geométricos del espacio.
We need to assume that space Necesitamos suponer que el espacio
is literally and physically quantized, es cabal y físicamente cuantificable,
that it’s made of interactive pieces. que está hecho de piezas interactivas.
If space is quantized, Si el espacio es cuantificable,
then it cannot be infinitely divided entonces no se puede dividir infinitamente
into smaller and smaller increments. en incrementos cada vez más pequeños.
Once we get down to a fundamental size, Una vez que alcanzamos un tamaño fundamental,
we cannot go any further no podemos ir más allá
and still be talking y aún hablaremos de
about distances in space. distancias en el espacio.
Let’s consider an analogy: Consideremos una analogía:
Imagine we have a chunk of pure gold imaginen que tenemos un pedazo de oro puro
that we mean to cut in half que queremos cortar en
over and over. mitades una y otra vez
We can entertain two questions here: Podemos jugar con dos preguntas:
How many times can we cut ¿cuántas veces podemos cortar
what we have in half? la mitad que tenemos?
and: How many times can we cut  Y, ¿cuántas veces podemos cortar la mitad
what we have in half and still have gold? que tenemos y que siga siendo oro?
These are Estas son dos preguntas completamente diferentes,
two completely different questions,  porque una vez que
because once we get down  llegamos a un átomo de oro,
to one atom of gold, no podemos ir más allá
we cannot go any further sin rebasar
without transcending la definición de oro
the definition of gold. Si el espacio se cuantifica,
If space is quantized, .entonces la misma cosa se aplica.
then the same thing applies. No podemos hablar de
We cannot talk about distances in space distancias en el espacio
that are less than que sean menores a la unidad
the fundamental unit of space fundamental de espacio
for the same reason y por la misma razón, no podemos
we cannot talk about amounts of gold hablar de pedazos de oro
that are less than 1 atom of gold. que sean menores a un átomo de oro.
Quantizing space brings us Cuantificar el espacio nos lleva
to a new geometric picture. a un cuadro geométrico nuevo.
One like this, Uno como éste,
where the collection of these pieces, donde la colección de
these quanta, estas piezas, estos quanta
come together to construct se unen para construir
the fabric of x, y and z. la tela de X, Y y Z.
This geometry is eleven-dimensional. Esta geometría tiene 11 dimensiones.
So if you’re seeing this, you already Así que si están viendo esto, ya lo
got it. It’s not gonna be beyond you. entendieron. No irá más allá de Uds.
We just need to make sense Sólo necesitamos darle sentido
of what’s going on. a lo que está pasando.
Notice that there are Noten que hay tres tipos
three distinct types of volume distintos de volumen
and all volumes y todos los volúmenes
are three-dimensional. son tridimensionales.
Distance between any two points in space La distancia entre dos puntos en el espacio
becomes equal to the number of quanta se vuelve igual al número de quanta
that are instantaneously between them. que hay instantáneamente entre ellos.
The volume inside each quantum El volumen dentro de
is interspatial, cada cuánto es interespacial,
and the volume that y el volumen en que se mueven
the quanta move about in is superspatial. los cuántos es superespacial.
Notice how having perfect information Noten cómo teniendo información
about x, y, z position, perfecta de la posición X, Y y Z,
only enables us to identify sólo nos permite identificar
a single quantum of space. a un solo cuánto de espacio.
Also notice that it’s now possible También noten que ahora
for an object es posible para un objeto
to be moving about interspatially que se mueve interespacialmente
or superspatially o superespacialmente
without changing sin cambiar en absoluto
its x, y, z position at all. su posición X, Y y Z.
This means that Esto significa que hay
there are 9 independent ways 9 formas independientes
for an object to move about. para que un objeto se mueva.
That makes 9 spatial dimensions. Esto hace 9 dimensiones espaciales:
3 dimensions of x, y, z volume, 3 dimensiones de volumen X, Y y Z,
3 dimensions of superspatial volume, 3 dimensiones de volumen superespacial,
and 3 dimensions of interspatial volume. y 3 dimensiones de volumen interespacial.
Then we have time, Luego tenemos al tiempo,
which can be defined as que se puede definir como
the whole number of resonations el número total de resonancias
experienced at each quantum. experimentadas por cada cuánto.
And super-time allows us to describe Y el supertiempo nos permite describir
their motion through super-space. su movimiento a través del superespacio.
OK, I know this is a whirlwind, De acuerdo, sé que esto es un revoltijo,
a lot faster than I’d like to do it, dicho más rápido de lo que quisiera,
because there are so many details porque hay tantos más detalles
we can go into. que podríamos examinar.
But there’s a significant advantage Pero hay una ventaja significativa
to being able to describe space el poder describir el espacio
as a medium that can possess como un medio que puede poseer
density, distortions and ripples. densidad, distorsión y ondas.
For example, we can now describe Por ejemplo, ahora podemos describir
Einstein’s curved space-time el espacio tiempo curvo de Einstein
without dimensionally sin dimensionalmente
reducing the picture. reducir el cuadro.
Curvature is a change La curvatura es un cambio en
in the density of these space quanta. la densidad de estos cuántos de espacio.
The denser the quanta get, Entre más densos los cuántos se hagan,
the less they can freely resonate menos pueden resonar libremente
so they experience less time. y por tanto experimentan menos tiempo.
And in the regions Y en las regiones
of maximum density, de máxima densidad
and the quanta are all donde los cuántos están todos
packed completely together, compactados completamente,
like in black holes, como en los agujeros negros,
they experience no time. no experimentan el tiempo.
Gravity is simply the result La gravedad es simplemente
of an object traveling straight el resultado de un objeto que viaja directo
through curved space. a través del espacio curvo.
Going straight through x, y, z space Viajar directamente en el espacio X, Y y Z
means both your left side significa que tanto su lado
and your right side izquierdo como el derecho
travel the same distance, viajan la misma distancia, interactúan
interact with the same number of quanta. con el mismo número de quanta.
So, when a density gradient Así cuando existe un gradiente
exists in space, de densidad en el espacio,
the straight path is the one el trayecto directo es aquel que provee
that provides an equal spatial experience una experiencia de espacio uniforme
for all parts of a traveling object. a todas las partes de un objeto en movimiento.
OK, this is a really big deal. Bueno, esto es un gran problema.
If you’ve ever looked at a graph Si han visto alguna vez una gráfica
of Einstein curvature before, de la curvatura de Einstein,
space-time curvature, la curvatura de espacio tiempo,
you may have not noticed that one quizá hayan notado que una de
of the dimensions was unlabeled. las dimensiones no está etiquetada.
We assumed we took La suposición fue que tomamos
a plane of our world un plano de nuestro mundo
and anytime there was mass in that plane y cada vez que hubo una masa
we’ll stretch it; en ese plano, lo estirábamos;
if there was more mass, si había más masa,
we stretch it more, la estirábamos más,
to show how much curvature there is. para demostrar cuánta curvatura había.
But what’s the direction ¿Pero en qué dirección
we’re stretching in? estábamos estirando?
We got rid of the z dimension. Nos deshicimos de la dimensión Z.
We blow over that every single time Nos olvidamos de ella todas
in our books. las veces en nuestros libros.
Here, we didn’t have to get rid Aquí, no tuvimos que
of the z dimension. deshacernos de la dimensión Z.
We got to show curvature Llegamos a mostrar
in its full form. la curvatura en toda su forma.
And this is a really big deal. Y esto es un verdadero gran problema.
Other mysteries Otros misterios que
that pop out of this map, surgen de este mapa,
like quantum tunneling – como los túneles cuánticos…
Remember our Flatlanders? ¿Recuerdan a nuestros flatlanders?
Well, they’ll see a red light appear Bueno, ellos ven un destello rojo
somewhere on the horizon aparecer en algún lugar del horizonte
and then it’ll disappear, y luego desaparecer y
and as far as they’re concerned, por lo que a ellos respecta,
it’s gone from the universe. se ha ido del universo.
But if a red light appears again Pero si un destello rojo aparece otra vez,
somewhere else on the line, en algún otro lugar de la línea,
they might call it quantum tunneling, podrían llamarlo túnel cuántico.
The same way when we watch an electron, De la misma forma que cuando vemos un electrón,
and then it disappears y luego desaparece
from the fabric of space de la tela del espacio
and reappears somewhere else, y reaparece en algún otro lugar
and that somewhere else y aquel otro lugar
can actually be beyond the boundary that ¿puede estar más allá de la frontera
it’s not supposed to be able to get beyond. que no se supone que puede rebasar?
OK? Can you use this picture now? ¿De acuerdo? ¿Pueden ver este cuadro
To solve that mystery? ahora para solucionar ese misterio?
Can you see how the mysteries of our world ¿Pueden ver cómo los misterios de nuestro mundo
can transform into elegant aspects pueden transformarse en aspectos elegantes
of our new geometric picture? de nuestro cuadro geométrico?
All we have to do Todo lo que tenemos que hacer
to make sense of those mysteries para darle sentido a estos misterios
is to change our geometric assumptions, es cambiar nuestros supuestos
to quantize space. geométricos para cuantificar el espacio.
OK, this picture also Bien, este cuadro también
has something to say tiene algo que decir
about where the constants acerca de dónde vienen
of nature come from; las constantes de la natualeza;
like the speed of light, Planck’s constant, como la velocidad de la luz, la constante de
the gravitational constant and so on. Planck, la constante gravitacional y demás.
Since all units of expression, Puesto que todas la unidades de expresión:
Newtons, Joules, Pascals, etc, Newtons, Joules, Pascales, etc.,
can be reduced to five combinations se pueden reducir a cinco combinaciones
of length, mass, time, de longitud, masa, tiempo,
ampere and temperature, amperaje y temperatura,
quantizing the fabric of space, cuantificar la tela del espacio
means that those five expressions significa que esas 5 expresiones deben
must also come in quantized units. también ser unidades de cantidad.
So, this gives us five numbers Así esto nos da 5 números que
that stem from our geometric map. brotan de nuestro mapa geométrico.
Natural consequences of our map, Las consecuencias naturales de
with units of one. nuestro mapa, con unidades de uno.
There’s two other numbers in our map. Hay otros dos números en nuestro mapa.
Numbers that reflect Números que reflejan
the limits of curvature. los límites de la curvatura.
Pi can be used to represent Pi se puede usar para representar
the minimum state of curvature, el estado mínimo de curvatura,
or zero curvature, o cero curvatura, mientras que
while a number we are calling zhe, un números que llamaremos zhe,
can be used to represent se puede usar para representar
the maximum state of curvature. el estado máximo de curvatura.
The reason we now have a maximum La razón de que ahora tengamos un máximo
is because we’ve quantized space. es porque hemos cuantificado el espacio.
We can’t infinitely continue to go on. No podemos continuar así indefinidamente.
What do these numbers do for us? ¿Qué hacen estos números por nosotros?
Well, this long list here Bueno, esta larga lista aquí
is the constants of nature, son las constantes de la naturaleza,
and if you’ve noticed, even though y si han notado, aun cuando
they’re flying by pretty fast, están pasando muy rápido,
they’re all made up of the five numbers todos están hechos de 5 números
that come from our geometry que provienen de nuestra geometría
and the two numbers y los dos números
that come from the limits of curvature. que provienen de los límites de curvatura.
That’s a really big deal by the way, Por cierto, eso es un auténtico problema
to me it’s a really big deal. para mí, es un verdadero problema.
This means that the constants of nature Esto significa que las constantes de la naturaleza
come from the geometry of space; provienen de la geometría del espacio:
they’re necessary consequences son necesariamente
of the model. consecuencias del modelo.
OK. This is a lot of fun Bueno, esto es muy divertido
because there are so many punch lines, porque tiene tantos remates,
it’s hard to know exactly pues es difícil saber exactamente
who’s going to get caught where. quién quedará atrapado en dónde.
But, this new map, Pero este nuevo mapa,
allows us to explain gravity, nos permite explicar la gravedad,
in a way that’s en una forma que es
totally conceptual now, totalmente conceptual hoy,
you get the whole picture in your head, conciben todo el cuadro en sus cabezas,
black holes, quantum tunneling, agujeros negros, túneles cuánticos,
the constants of nature, las constantes de la naturaleza,
and in case none of those y en caso de que ninguno de
caught your fancy, ellos capture su imaginación,
or you’ve never heard o nunca antes haya oído de ellos,
of any of them before, en definitiva apenas han oído
you’ve definitely just barely heard de la materia y la energía oscuras.
about dark matter and dark energy. Esas también son
Those too are geometric consequences. consecuencias geométricas.
Dark matter, La materia oscura, cuando
when we look at distant galaxies, miramos galaxias distantes,
and watch the stars y vemos las estrellas que
that orbit about in those galaxies, orbitan alrededor de esas galaxias,
the stars out at the edges las estrellas en las orillas
are moving too fast, se mueven demasiado rápido,
they seem to have extra gravity. parecieran tener gravedad extra.
How do we explain this? ¿Como nos explicamos esto?
Well, we couldn’t, so we say Bueno, no pudimos, entonces dijimos
there must be some other matter there, que debe de haber alguna materia
creating more gravity, ahí, que crea más gravedad,
making those effects. que ocasiona esos efectos,
But we can’t see the matter. pero no podemos ver la materia.
So we call it dark matter. And we define Entonces la llamamos materia oscura, y la
dark matter as something you can’t see! definimos como algo ¡que no pueden ver!
Which is fine, it’s a good step, Lo cual está bien, es un buen paso,
it’s a good start, es un buen comienzo,
but here in our model we didn’t have to pero aquí en nuestro modelo no tenemos
take that kind of a leap. que hacer ese tipo de salto.
We took a leap, Dimos un salto, dijimos
we said space is quantized, que el espacio se cuantifica,
but everything else pero todo lo demás
fell out from that. queda fuera de eso.
Here, we’re saying, Aquí decimos que el espacio está
space is made up of fundamental parts, hecho de partes fundamentales,
just the same way we believe air de la misma forma en que creemos
is made out of molecules. que el aire está hecho de moléculas.
If that’s true, Si eso es cierto, entonces
then an automatic requirement is el requisito automático es
you can have changes in density, que podemos tener cambios en densidad,
this is where gravity comes from, esto es de donde viene la gravedad,
but you should also have phase changes. pero también deben
And what stimulates a phase change? tener cambios de fase.
Well, temperature. ¿Y qué estimula un cambio de fase?
When something gets cold enough, Bueno, la temperatura.
its geometric arrangement will change, Cuando algo se enfría,
and it will change phase. su arreglo geométrico cambiará,
A change in the density here, y cambiará su fase.
at the outer regions of the galaxies, Un cambio de fase aquí, en
is going to cause las regiones externas de las galaxias,
a gravitational field, producirá un campo gravitacional,
because that’s what porque eso son
gravitational fields are, los campos gravitacionales,
they’re changes in density. son cambios de densidad.
OK? ¿De acuerdo?
Totally skipped through all that. Nos saltamos todo esto.
And now we’ll go to dark energy, Y ahora veremos la energía
in 15 seconds. oscura en 15 segundos.
When we look out into the cosmos, Cuando miramos hacia el cosmos,
we see that distant light vemos que la luz distante
is red shifted, OK? se corre hacia el rojo, ¿de acuerdo?
That it loses some of its energy Esto es que pierde algo de
as it’s traveling to us su energía al viajar hacia nosotros.
for billions of years. durante miles de millones de años.
Now how do we explain Ahora, ¿cómo explicamos
that red shift? ese corrimiento al rojo?
Well, currently we say it means Actualmente decimos que esto significa que
the universe is expanding. OK? el universo se expande, ¿sí?
All of our claims that the universe Todas nuestras afirmaciones de que el universo
is expanding come from this, se expande provienen de esto,
from measurements of how de mediciones de cómo
the red shift changes, el corrimiento al rojo cambia,
out of this distance de esta distancia a
to this distance to that distance. esta distancia a esa distancia.
OK? And also we measure ¿Bien? Y también medimos
the expansion that way. la expansión de esa forma.
But there’s another way Pero hay otra forma de
to explain red shift. explicar el corrimiento al rojo.
Just like there’d be another way Así como hay otra forma de explicar
to explain how if I had a tuning fork cómo es que tenía un diapasón
tuned to middle C, entonado en Do,
and I went in a tunnel y cuando entré al túnel,
and you could hear… a B note. podían oír la nota Si.
Sure, you could say it’s because Seguro pueden decir que se debe a
I’m moving away from you inside the tunnel, que me estoy moviendo dentro del túnel,
but it could also be because pero también puede ser porque
the pressure of the atmosphere la presión de la atmósfera
is decreasing while the sound está disminuyendo mientras
is traveling to your ear. el sonido viaja a sus oídos.
Here, that seemed Eso como que es
a little far fetched un poco descabellado
because atmospheric pressure porque la presión atmosférica
doesn’t decrease fast, no disminuye rápido,
but when we’re talking billions of years pero cuando hablamos de miles de millones
of light traveling through space, de años luz de viaje por el espacio,
all we need are the quanta themselves todo lo que necesitamos son los quanta
to have a small amount of inelasticity para tener una pequeña cantidad de
and red shift is imminent. inelasticidad y el cambio al rojo es inminente.
Alright, there’s a lot more Bueno, hay mucho más
to explore in this, por explorar en esto,
because if you’re interested, y si están interesados,
feel free to check out this website revisen este sitio web
and give all the feedback you can. y dennos toda la retroalimentación que puedan.
We’re out of time so let me just say, Se nos acaba el tiempo; sólo diré que este
that this blueprint gives us a mental tool, anteproyecto nos da una herramienta mental
a tool that can expand una herramienta que puede expander
the reach of our imagination, el alcance de nuestra imaginación
and, maybe, even respark y quizá, incluso vuelva a encender
the romanticism of Einstein’s quest. la búsqueda del romanticismo de Einstein.
Thank you. Gracias.
(Applause)  (Aplausos)

Visualizing Dimensions

dilluns, 22/04/2019

Thad Roberts is a theoretical physicist, a philosopher of physics, the inspiration behind the New York Times best seller Sex on the Moon: The Amazing Story Behind the Most Audacious Heist in History, and the author of ‘Einstein’s Intuition: Visualizing Nature in Eleven Dimensions‘.

(Applause)

Does anybody here happen to be interested in other dimensions? All right.

Well, thank you all for your time and your space. Good, I’m glad that one worked here.

All right. Imagine a world whose inhabitants live and die believing only in the existence of two spatial dimensions. A plane. These Flatlanders are going to see some pretty strange things happen; things that are impossible to explain within the constraints of their geometry. For example, imagine that one day, some Flatlander scientists observe this: A set of colorful lights that appear to randomly appear in different locations along the horizon. No matter how hard they try to make sense of these lights, they’ll be unable to come up with a theory that can explain them.

Some of the more clever scientists might come up with a way to probabilistically describe the flashes. For example, for every 4 seconds, there’s 11% chance that a red flash will occur somewhere on the line. But no Flatlander will be able to determine exactly when or where the next red light will be seen.

As a consequence, they start to think that the world contains a sense of indeterminacy, that the reason these lights cannot be explained, is that at the fundamental level nature just doesn’t make sense. Are they right? Does the fact that they were forced to describe these lights probabilistically actually mean that the world is indeterministic?

01:50

The lesson we can learn from Flatland is that when we assume only a portion of nature’s full geometry, deterministic events can appear fundamentally indeterministic. However, when we expand our view and gain access to the full geometry of the system, indeterminacy disappears. As you can see, we can now determine exactly when and where the next red light will be seen on this line.

We are here tonight to consider the possibility that we are like the Flatlanders. Because, as it turns out, our world is riddled with mysteries that just don’t seem to fit inside the geometric assumptions we have made. Mysteries like warped space-time, black holes, quantum tunneling, the constants of nature, dark matter, dark energy, et cetera. The list is quite long.

How do we respond to these mysteries? Well, we have two choices: We can either cling to our previous assumptions and invent new equations that exist somehow outside of the metric, as a vague attempt to explain what’s going on, or we can take a bolder step, throw out our old assumptions, and construct a new blueprint for reality. One that already includes those phenomena.

It’s time to take that step. Because we are in the same situation as the Flatlanders. The probabilistic nature of quantum mechanics has our scientists believing that deep down, the world is indeterminant. That the closer we look, the more we will find that nature just doesn’t make sense. Hmm… Perhaps all of these mysteries are actually telling us that there’s more to the picture. That nature has a richer geometry than we have assumed.

Maybe the mysterious phenomena in our world could actually be explained by a richer geometry, with more dimensions. This would mean that we are stuck in our own version of Flatland. And if that’s the case, how do we pop ourselves out? At least conceptually? Well, the first step is to make sure that we know exactly what a dimension is.

04:08

A good question to start with is: What is it about X, Y and Z that makes them spatial dimensions? The answer is that a change in position in one dimension does not imply a change in position in the other dimensions. Dimensions are independent descriptors of position. So Z is a dimension because an object can be holding still in X and Y while it’s moving in Z. So, to suggest that there are other spatial dimensions is to say that it must be possible for an object to be holding still in X, Y and Z, yet still moving about in some other spatial sense.

But where might these other dimensions be? To solve that mystery, we need to make a fundamental adjustment to our geometric assumptions about space. We need to assume that space is literally and physically quantized, that it’s made of interactive pieces. If space is quantized, then it cannot be infinitely divided into smaller and smaller increments. Once we get down to a fundamental size, we cannot go any further and still be talking about distances in space.

Let’s consider an analogy. Imagine we have a chunk of pure gold that we mean to cut in half over and over. We can entertain two questions here: How many times can we cut what we have in half? and How many times can we cut what we have in half and still have gold? These are two completely different questions, because once we get down to one atom of gold, we cannot go any further without transcending the definition of gold.

If space is quantized, then the same thing applies. We cannot talk about distances in space that are less than the fundamental unit of space for the same reason we cannot talk about amounts of gold that are less than 1 atom of gold.

Quantizing space brings us to a new geometric picture. One like this, where the collection of these pieces, these quanta, come together to construct the fabric of X, Y and Z. This geometry is eleven-dimensional. So if you’re seeing this, you already got it. It’s not going to be beyond you. We just need to make sense of what’s going on.

Notice that there are three distinct types of volume and all volumes are three-dimensional. Distance between any two points in space becomes equal to the number of quanta that are instantaneously between them. The volume inside each quantum is interspatial, and the volume that the quanta move about in is superspatial.

Notice how having perfect information about X, Y, Z position, only enables us to identify a single quantum of space. Also notice that it’s now possible for an object to be moving about interspatially or superspatially without changing its X, Y, Z position at all. This means that there are 9 independent ways for an object to move about. That makes 9 spatial dimensions. 3 dimensions of X, Y, Z volume, 3 dimensions of superspatial volume, and 3 dimensions of interspatial volume. Then we have time, which can be defined as the whole number of resonations experienced at each quantum. And super-time allows us to describe their motion through super-space.

OK, I know this is a whirlwind, a lot faster than I’d like to do it, because there are so many details we can go into. But there’s a significant advantage to being able to describe space as a medium that can possess density, distortions and ripples. For example, we can now describe Einstein’s curved space-time without dimensionally reducing the picture.

08:02

Curvature is a change in the density of these space quanta. The denser the quanta get, the less they can freely resonate so they experience less time. And in the regions of maximum density, and the quanta are all packed completely together, like in black holes, they experience no time. Gravity is simply the result of an object traveling straight through curved space. Going straight through X, Y, Z space means both your left side and your right side travel the same distance, interact with the same number of quanta.

So, when a density gradient exists in space, the straight path is the one that provides an equal spatial experience for all parts of a traveling object.

OK, this is a really big deal. If you’ve ever looked at a graph of Einstein curvature before, space-time curvature, you may have not noticed that one of the dimensions was unlabeled. We assumed we took a plane of our world and anytime there was mass in that plane we’ll stretch it; if there was more mass, we stretch it more, to show how much curvature there is.

But what’s the direction we’re stretching in? We got rid of the Z dimension. We blow over that every single time in our books. Here, we didn’t have to get rid of the Z dimension. We got to show curvature in its full form. And this is a really big deal.

Other mysteries that pop out of this map, like quantum tunneling — Remember our Flatlanders? Well, they’ll see a red light appear somewhere on the horizon and then it’ll disappear, and as far as they’re concerned, it’s gone from the universe. But if a red light appears again somewhere else on the line, they might call it quantum tunneling, the same way when we watch an electron, and then it disappears from the fabric of space and reappears somewhere else, and that somewhere else can actually be beyond the boundary that it’s not supposed to be able to get beyond.

OK? Can you use this picture now to solve that mystery? Can you see how the mysteries of our world can transform into elegant aspects of our new geometric picture? All we have to do to make sense of those mysteries is to change our geometric assumptions, to quantize space.

OK, this picture also has something to say about where the constants of nature come from; like the speed of light, Planck’s constant, the gravitational constant and so on. Since all units of expression, Newtons, Joules, Pascals, et cetera, can be reduced to five combinations of length, mass, time, ampere and temperature, quantizing the fabric of space, means that those five expressions must also come in quantized units. So, this gives us five numbers that stem from our geometric map. Natural consequences of our map, with units of one.

There’s two other numbers in our map. Numbers that reflect the limits of curvature. Pi can be used to represent the minimum state of curvature, or zero curvature, while a number we are calling zhe, can be used to represent the maximum state of curvature. The reason we now have a maximum is because we’ve quantized space. We can’t infinitely continue to go on.

11:21

What do these numbers do for us? Well, this long list here is the constants of nature, and if you’ve noticed, even though they’re flying by pretty fast, they’re all made up of the five numbers that come from our geometry and the two numbers that come from the limits of curvature. That’s a really big deal by the way, to me it’s a really big deal. This means that the constants of nature come from the geometry of space; they’re necessary consequences of the model.

This is a lot of fun because there are so many punch lines, it’s hard to know exactly who’s going to get caught where. But, this new map, allows us to explain gravity, in a way that’s totally conceptual now, you get the whole picture in your head, black holes, quantum tunneling, the constants of nature, and in case none of those caught your fancy, or you’ve never heard of any of them before, you’ve definitely just barely heard about dark matter and dark energy. Those too are geometric consequences.

Dark matter, when we look at distant galaxies, and watch the stars that orbit about in those galaxies, the stars out at the edges are moving too fast, they seem to have extra gravity. How do we explain this? Well, we couldn’t, so we say there must be some other matter there, creating more gravity, making those effects. But we can’t see the matter. So we call it dark matter. And we define dark matter as something you can’t see. Which is fine, it’s a good step, it’s a good start, but here in our model we didn’t have to take that kind of a leap. We took a leap, we said space is quantized, but everything else fell out from that.

Here, we’re saying, space is made up of fundamental parts, just the same way we believe air is made out of molecules. If that’s true, then an automatic requirement is you can have changes in density, this is where gravity comes from, but you should also have phase changes.

And what stimulates a phase change? Well, temperature. When something gets cold enough, its geometric arrangement will change, and it will change phase. A change in the density here, at the outer regions of the galaxies, is going to cause a gravitational field, because that’s what gravitational fields are, they’re changes in density.

OK? Totally skipped through all that. And now we’ll go to dark energy, in 15 seconds. When we look out into the cosmos, we see that distant light is red shifted, OK? That it loses some of its energy as it’s traveling to us for billions of years.

Now how do we explain that red shift? Well, currently we say it means the universe is expanding. OK? All of our claims that the universe is expanding come from this, from measurements of how the red shift changes, out of this distance to this distance to that distance. And also we measure the expansion that way.

But there’s another way to explain red shift. Just like there’d be another way to explain how if I had a tuning fork tuned to middle C, and I went in a tunnel and you could hear a B note. Sure, you could say it’s because I’m moving away from you inside the tunnel, but it could also be because the pressure of the atmosphere is decreasing while the sound is traveling to your ear.

Here, that seemed a little far-fetched because atmospheric pressure doesn’t decrease fast, but when we’re talking billions of years of light traveling through space, all we need is the quanta themselves to have a small amount of inelasticity and red shift is imminent.

All right, there’s a lot more to explore in this, because if you’re interested, feel free to check out this website and give all the feedback you can. We’re out of time so let me just say, that this blueprint gives us a mental tool, a tool that can expand the reach of our imagination, and maybe, even respark the romanticism of Einstein’s quest.

Thank you.

(Applause)

 

What it is like for a bat to be a bat?

diumenge, 21/04/2019

Batman and Nagel

About logical significance of what we can never understand

diumenge, 21/04/2019

If anyone is inclined to deny that we can believe in the existence of facts like this whose exact nature we cannot possibly conceive, he should reflect that in contemplating the bats we are in much the same position that intelligent bats or Martians would occupy if they tried to form a conception of what it was like to be us. The structure of their own minds might make it impossible for them to succeed, but we know they would be wrong to conclude that there is not anything precise that it is like to be us: that only certain general types of mental state could be ascribed to us (perhaps perception and appetite would be concepts common to us both; perhaps not). We know they would be wrong to draw such a skeptical conclusion because we know what it is like to be us. And we know that while it includes an enormous amount of variation and complexity, and while we do not possess the vocabulary to describe it adequately, its subjective character is highly specific, and in some respects describable in terms that can be understood only by creatures like us. The fact that we cannot expect ever to accommodate in our language a detailed description of Martian or bat phenomenology should not lead us to dismiss as meaningless the claim that bats and Martians have experiences fully comparable in richness of detail to our own. It would be fine if someone were to develop concepts and a theory that enabled us to think about those things; but such an understanding may be permanently denied to us by the limits of our nature. And to deny the reality or logical significance of what we can never describe or understand is the crudest form of cognitive dissonance.

Thomas Nagel What is it like to be a bat phenomenology neurology problem hard consciousness chalmers sjöstedt-H neuroscience limits

——-

Thomas Nagel,  “What is it like to be a bat?”
From The Philosophical Review LXXXIII, 4 (October 1974)

Nasa may baffle alien life

dissabte, 20/04/2019

Ian Sample, 26 May 2018
The Voyager Golden Record

The Voyager Golden Records contain sounds and images selected to portray the diversity of life and culture on Earth

It was launched to the stars as a portrait of humanity: an alien’s guide to life on Earth and the wonderful, rich culture of its dominant species.

But the Golden Record, blasted into space by Nasa in 1977, may deliver an entirely different message to any extraterrestrials who happen to encounter the cosmic missive, researchers point out.

Rather than the peaceful, intelligent beings that the US space agency hoped to portray, humans may come across as a species that loves to argue, speaks gibberish, and sees beauty in flowers that roar like chainsaws.

The potential for the Golden Record, copies of which are aboard Nasa’s Voyager 1 and 2 probes, to mislead alien life will be raised by researchers at the National Space Society meeting in Los Angeles on Saturday.

Nasa’s Golden Record may baffle alien life, say researchers

The Golden Record

The Golden Record … music ranges from Bach and Stravinsky to Javanese gamelan and Bulgarian folk music

 Rebecca Orchard and Sheri Wells-Jensen at Bowling Green State University in Ohio say that the record’s 117 pictures, humpback whale sounds, greetings in 54 languages, 20-minute “sound essay” of life on Earth, and 90 minute romp through the planet’s music, is decidedly human-centric.

“The Golden Record is a beautiful artefact and representation of how humans want to see themselves, but it is meant to be received by and interpreted by something that has the sensory capabilities of the average human,” said Orchard. “If the second one of these senses is absent, or an entirely different sense is added, the Golden Record becomes a bit confusing.”

Orchard and Wells-Jensen went through the material on the record and considered what an alien civilisation with a different suite of senses might make of it. The barrage of greetings “pile up in a way that could be construed as arguing”, said Orchard, in a language that has “no grammatical congruity”. That is, if they can hear.

The 12-inch gold-plated copper disc has audio on one side and images on the other, and this could lead to further misunderstandings, the researchers believe. If an alien civilisation tried to match sounds to their objects, life on Earth can look very strange. “What if you pair the image of an open daffodil with the roar of a chainsaw?” said Orchard.

Perhaps the most baffling of all would be the music which ranges from Bach and Stravinsky to Javanese gamelan and Bulgarian folk music. “I obviously can’t say how these differences and transitions will be interpreted, but what I can say is that it definitely creates a puzzle for a listener who would be completely unfamiliar with humans and the noises they make,” Orchard said.

Whatever confusion the record may cause, it is unlikely to happen soon. While Voyager 1 is now 12bn miles away and the farthest human-made object from Earth, it will be 40,000 years before it comes close to another star system.

“What this project has shown me is that we can’t really control the impression we make,” said Orchard. “I think the fact of the satellite itself will do a lot of the talking. I would hope that the mere fact that we’ve endeavoured to send a record of humanity shows something about our humanity.”

Provided by NASA on their own video feed

dissabte, 20/04/2019

This is UFO evidence from Space, shows footage that was filmed by the cameras that were fixed on the Space Shuttle from several missions so the footage is authentic and difficult to dismiss as fake. Some of the space objects are clearly under intelligent control as they make sharp turns against the gravitational field.

Caso “Yankas”

divendres, 19/04/2019

Caso Dionisio LLanca (3)

divendres, 19/04/2019

Caso Dionisio Llanca (2)

dijous, 18/04/2019

 

Caso DIONISIO LLANCA (1)

dijous, 18/04/2019

El 28 de octubre de 1973 el chofer argentino Dionisio Llanca tuvo una experiencia enigmática al cambiar un neumático desinflado en una carretera solitaria. Se encontró con tres seres extraños que lo llevaron a una nave espacial.

Dionisio, un soltero tranquilo y reservado de 24 años de edad, jamás pensó que terminaría su viaje en un hospital en Bahía Blanca en un estado de amnesia total. Unos días más tarde en el hospital, recuperó su memoria y relató su extraordinaria experiencia: una noche de encuentro con un platillo volador y tres extraterrestres de tipo nórdico que tomaron una muestra de su sangre y hablaban entre sí en un idioma extraño.