Entrades amb l'etiqueta ‘Chris Anderson’

No one knows the answers

dilluns, 11/02/2019

Transcripts

On a typical day at school, endless hours are spent learning the answers to questions, but right now, we’ll do the opposite. We’re going to focus on questions where you can’t learn the answers because they’re unknown. I used to puzzle about a lot of things as a boy, for example: What would it feel like to be a dog? Do fish feel pain? How about insects? Was the Big Bang just an accident? And is there a God? And if so, how are we so sure that it’s a He and not a She? Why do so many innocent people and animals suffer terrible things? Is there really a plan for my life? Is the future yet to be written, or is it already written and we just can’t see it? But then, do I have free will? I mean, who am I anyway? Am I just a biological machine? But then, why am I conscious? What is consciousness? Will robots become conscious one day? I mean, I kind of assumed that some day I would be told the answers to all these questions. Someone must know, right? Guess what? No one knows. Most of those questions puzzle me more now than ever. But diving into them is exciting because it takes you to the edge of knowledge, and you never know what you’ll find there. So, two questions that no one on Earth knows the answer to.
(Music)

01:52

[How many universes are there?]
Sometimes when I’m on a long plane flight, I gaze out at all those mountains and deserts and try to get my head around how vast our Earth is. And then I re-member that there’s an object we see every day that would literally fit one million Earths inside it: the Sun. It seems impossibly big. But in the great scheme of things, it’s a pinprick, one of about 400 billion stars in the Milky Way galaxy, which you can see on a clear night as a pale white mist stretched across the sky. And it gets worse. There are maybe 100 billion galaxies detectable by our telescopes. So if each star was the size of a single grain of sand, just the Milky Way has enough stars to fill a 30-foot by 30-foot stretch of beach three feet deep with sand. And the entire Earth doesn’t have enough beaches to represent the stars in the overall universe. Such a beach would continue for literally hundreds of millions of miles. Holy Stephen Hawking, that is a lot of stars. But he and other physicists now believe in a reality that is unimaginably bigger still. I mean, first of all, the 100 billion galaxies within range of our tele-scopes are probably a minuscule fraction of the total. Space itself is expanding at an accelerating pace. The vast majority of the galaxies are separating from us so fast that light from them may never reach us. Still, our physical reality here on Earth is intimately connected to those distant, invisible galaxies. We can think of them as part of our universe. They make up a single, giant edifice obeying the same physical laws and all made from the same types of atoms, electrons, protons, quarks, neutrinos, that make up you and me.However, recent theories in physics, including one called string theory, are now telling us there could be countless other universes built on different types of particles, with different properties, obeying different laws. Most of these universes could never support life, and might flash in and out of exis-tence in a nanosecond. But nonetheless, combined, they make up a vast multiverse of possible universes in up to 11 dimensions, featuring wonders beyond our wildest imagination. The leading version of string theory predicts a multiverse made up of 10 to the 500 unive-rses. That’s a one followed by 500 zeros, a number so vast that if every atom in our observable universe had its own universe, and all of the atoms in all those universes each had their own universe, and you repeated that for two more cycles, you’d still be at a tiny fraction of the total, namely, one trillion trillion trillion trillion trillion trillion trillion trillion trillion trillion trillion trillion trillion trillion trillionth.

(Laughter)

But even that number is minuscule compared to another number: infinity. Some physicists think the space-time continuum is literally infinite and that it contains an infinite number of so-called pocket universes with varying properties. How’s your brain doing?Quantum theory adds a whole new wrinkle. I mean, the theory’s been proven true beyond all doubt, but interpreting it is baffling, and some physicists think you can only un-baffle it if you imagine that huge numbers of parallel universes are being spawned every moment, and many of these universes would actually be very like the world we’re in, would include multiple copies of you. In one such universe, you’d graduate with honors and marry the person of your dreams, and in another, not so much. Well, there are still some scientists who would say, hogwash. The only meaningful answer to the question of how many universes there are is one. Only one universe. And a few philosophers and mystics might argue that even our own universe is an illusion. So, as you can see, right now there is no agreement on this question, not even close. All we know is the answer is somewhere between zero and infinity.Well, I guess we know one other thing. This is a pretty cool time to be studying physics. We just might be undergoing the biggest paradigm shift in knowledge that humanity has ever seen.

(Music)

[Why can’t we see evidence of alien life?]

Somewhere out there in that vast universe there must surely be countless other planets teeming with life. But why don’t we see any evidence of it? Well, this is the famous question asked by Enrico Fermi in 1950: Where is everybody? Conspiracy theorists claim that UFOs are visiting all the time and the reports are just being covered up, but honestly, they aren’t very convincing. But that leaves a real riddle. In the past year, the Kepler space observatory has found hundreds of planets just around nearby stars. And if you extrapolate that data, it looks like there could be half a trillion planets just in our own galaxy. If any one in 10,000 has conditions that might support a form of life, that’s still 50 million possible life-harboring planets right here in the Milky Way. So here’s the riddle: our Earth didn’t form until about nine billion years after the Big Bang. Countless other planets in our galaxy should have formed earlier, and given life a chance to get underway billions, or certainly many millions of years earlier than happened on Earth. If just a few of them had spawned intelligent life and started creating technologies, those technologies would have had millions of years to grow in complexity and power. On Earth, we’ve seen how dramatically technology can accelerate in just 100 years. In millions of years, an intelligent alien civili-zation could easily have spread out across the galaxy, perhaps creating giant energy-harvesting artifacts or fleets of colonizing spaceships or glorious works of art that fill the night sky. At the very least, you’d think they’d be revealing their presence, deliberately or otherwise, through electromagnetic signals of one kind or another.

And yet we see no convincing evidence of any of it. Why? Well, there are numerous possible answers, some of them quite dark. Maybe a single, superintelligent civilization has indeed taken over the galaxy and has imposed strict radio silence because it’s paranoid of any potential compe-titors. It’s just sitting there ready to obliterate anything that becomes a threat. Or maybe they’re not that inte-lligent, or perhaps the evolution of an intelligence capa-ble of creating sophisticated technology is far rarer than we’ve assumed. After all, it’s only happened once on Earth in four billion years. Maybe even that was incre-dibly lucky. Maybe we are the first such civilization in our galaxy. Or, perhaps civilization carries with it the seeds of its own destruc-tion through the inability to control the technologies it creates. But there are numerous more hopeful answers. For a start, we’re not looking that hard, and we’re spending a pitiful amount of money on it. Only a tiny fraction of the stars in our galaxy have really been looked at closely for signs of interesting signals. And perhaps we’re not looking the right way. Maybe as civilizations develop, they quickly discover communi-cation technologies far more sophis-ticated and useful than electromagnetic waves. Maybe all the action takes place inside the mysterious recently discovered dark matter, or dark energy, that appear to account for most of the universe’s mass. Or, maybe we’re looking at the wrong scale. Perhaps intelligent civilizations come to realize that life is ultimately just complex patterns of information interacting with each other in a beautiful way, and that that can happen more efficiently at a small scale. So, just as on Earth, clunky stereo systems have shrunk to beautiful, tiny iPods, maybe intelligent life itself, in order to reduce its footprint on the enviro-nment, has turned itself micros-copic. So the Solar System might be teeming with aliens, and we’re just not noticing them. Maybe the very ideas in our heads are a form of alien life. Well, okay, that’s a crazy thought. The aliens made me say it. But it is cool that ideas do seem to have a life all of their own and that they outlive their creators. Maybe bio-logical life is just a passing phase. Well, within the next 15 years, we could start seeing real spec-troscopic information from pro-mising nearby planets that will reveal just how life-friendly they might be.

And meanwhile, SETI, the Search for Extrate-rrestrial Intelligence, is now releasing its data to the public so that millions of citizen scientists, maybe including you, can bring the power of the crowd to join the search. And here on Earth, ama-zing experiments are being done to try to create life from scratch, life that might be very different from the DNA forms we know. All of this will help us understand whether the universe is teeming with life or whether, indeed, it’s just us. Either answer, in its own way, is awe-inspiring, because even if we are alone, the fact that we think and dream and ask these questions might yet turn out to be one of the most important facts about the universe. And I have one more piece of good news for you. The quest for knowledge and understan-ding never gets dull. It doesn’t. It’s actually the opposite. The more you know, the more amazing the world seems. And it’s the crazy possibi-lities, the unanswered questions, that pull us forward. So stay curious.

En un dia normal de col·legi, passem hores intermi-nables aprenent respostes a preguntes, però ara mateix, farem el contrari. Ens centrarem en preguntes on no es pot aprendre la resposta perquè és desconeguda. Solia pensar en moltes coses quan era xiquet, per exemple: Com em sentiria si fos un gos? Els peixos senten dolor? I els insectes? El Big Bang va ser només un accident? Existeix Deu? I si és així, com podem estar segurs que és un deu i no una deessa? Per què tanta gent innocent i tants animals pateixen tant? Hi ha realment un pla per a la meua vida? El futur està per escriure, o ja ha estat escrit i simplement no el podem veure? Però aleshores, tinc lliure voluntat? Vull dir, qui sóc realment? Sóc no-més una màquina biològica? Però aleshores, per què tinc consciència? Què és la consciència? Els robots arri-baran a tindre consciència? Pensava que algun dia em dona-rien les respostes a totes aquestes preguntes. Algú ha de saber-les, no? Sabeu què? Ningú les sap. Moltes d’aquestes preguntes m’intriguen ara més que mai. Però explorar-les és emocionant perquè ens porta als límits del coneixement, i mai sabem el que hi trobarem. Així doncs, dues preguntes que ningú del món sap respondre.
(Música)

01:52

[Quants universos hi ha?]
De vegades durant un llarg vol mire totes eixes muntanyes i deserts i tracte de fer-me la idea de com de gran és la nostra Terra. I després recorde que hi ha un objecte que veiem tots els dies dins del qual caben literalment un milió de Terres: el Sol. Sembla impossiblement gran. Però en comparació, és el forat d’una agulla, un dels 400 mil milions d’estels de la Via Làctia, que pots veure en una nit clara com una boira pàl·lida i blanca estesa al llarg del cel. I encara més. Potser hi ha 100 mil milions de galàxies detectables pels nostres telescopis. Així que si cada estel fóra com un gra d’arena, hi ha prou estels a la Via Làctia per a omplir de sorra un tram de platja de 9 per 9 metres i d’un metre de fondària. I en tota la Terra no hi ha prou platges per a representar tots els estels de l’univers. Una platja així s’estendria cents de millions de metres. Per Stephen Hawking, això són molts estels! Però ell i altres físics creuen en una realitat que encara és inimaginablement més gran. Primer, els 100 mil milions de galàxies a l’abast dels nostres telescopis són probablement una minúscula fracció del total. L’espai mateix s’expandeix a un ritme accelerat. La gran majoria de galàxies s’allunyen de nosaltres tan ràpid que potser mai ens n’arribi la llum. Tanmateix, la nostra realitat física a la Terra està íntimament connectada a eixes galàxies distants i invisibles. Podem considerar-les part del nostre univers. Formen un sol edifici gegantí que obeeix les mateixes lleis físiques i és fet dels mateixos tipus d’àtoms, electrons, protons, quarks, neutrins, que ens formen a tu i a mi.Tanmateix, les teories recents en física, inclosa la Teoria de les Cordes, diuen que hi podria haver incomptables altres universos fets de diferents tipus de partícules, amb propietats diferents, i que obeeixen lleis diferents. Molts d’aquests universos potser mai puguin albergar vida, i potser apareixen i s’esvaeixen en un nanosegon. Però malgrat açò, combinats, formen un vast multivers d’universos possibles estesos en 11 dimensions, que ofereixen meravelles que no podem ni imaginar. La versió més acceptada de la Teoria de Cordes prediu un multivers format per 10 elevat a 500 universos. Açò és un 1 seguit de 500 zeros, un nombre tan gran que si cada àtom al nostre univers observable tinguera el seu univers propi, i tots els atoms d’eixos universos tingueren el seu univers propi, i repetires això per dos cicles més, encara estaries en una xicoteta fracció del total, és a dir, un trilió trilió trilió trilió trilió trilió trilió trilió trilió trilió trilió trilió trilió trilió trilió del trilió.

(Rialles)

Però eixe nombre és encara minúscul comparat amb un altre nombre: infinit. Alguns físics pensen que el continu espai-temps és literalment infinit i que conté un nombre infinit dels anomenats unive-rsos de butxaca amb propietats variables. Com tens el cap?La teoria quàntica afegeix una nova capa. La teoria s’ha demostrat sense cap mena de dubte, però la seva interpretació és desconcertant, i alguns físics pensen que només es pot comprendre imaginant que un gran nombre d’universos paral·lels neixen a cada moment, i que molts d’aquests universos són proba-blement com el món on vivim, i inclouen múltiples còpies de tu. En un d’aquests universos t’has graduat amb matrícula i t’has casat amb la persona dels teus somnis, i en un altre, no. Encara hi ha científics que dirien “Ximpleries!” L’única resposta significativa a quants universos hi ha és un. Només un univers. I uns quants filòsofs i místics podrien argumentar que fins i tot el nostre univers és una il·lusió. Com podeu veure, ara mateix no hi ha un acord per a aquesta qüestió, ni de lluny. Tot el que sabem és que la resposta està entre zero i infinit. Crec que sabem una cosa més. És bon moment per estudiar física. Potser estem veient el major canvi de paradigma de coneixement que l’humanitat mai haja vist.

 

(Música)

[Per què no tenim proves de vida alienígena?]

En algun lloc d’aquest vast univers ha d’haver moltíssims planetes plens de vida. Però per què no en tenim cap prova? És la famosa pregunta que va fer Enrico Fermi el 1950: On està tothom? Els teòrics de la conspiració afirmen que els ovnis ens visiten cons-tantment però ens n’amaguen els informes. Però, realment, no són molt convincents. Però això ens deixa tot un misteri. L’any passat, l’observatori espacial Kepler va trobar cents de planetes al voltant d’estels propers. I si extrapoleu aquestes dades, sembla que podria haver-hi deu mil milions de planetes només a la nostra galàxia. Si 1 de cada 10,000 té condicions per a albergar alguna forma de vida, són 50 milion de possibles planetes portadors de vida ací a la Via Làctia mateix. Aquí rau el misteri: la nostra Terra no es va formar fins uns nou mil milions d’anys després del Big Bang. Abans s’haurien format incomptables planetes a la nostra galàxia, on hi podia haver començar la vida bilions, o molts milions d’anys abans que passara a la Terra. Si només uns quants hagueren desen-volupat vida intel·ligent i començat a crear tecnologies, eixes tecnologies haurien tingut milions d’anys per a créixer en complexitat i poder. A la Terra, hem vist com la tecnologia es pot accelerar dramàticament en només 100 anys. En milions d’anys, una civilització extraterrestre intel·ligent podria haver-se estès fàcilment per tota la galàxia, potser creant dispositius gegants per a obtenir energia o flotes de naus de colonització o glorioses obres d’art que omplin el cel nocturn. Almenys, s’entén que revelarien la seua presència, a propòsit o no, mitjançant senyals electro-magnètiques d’alguna mena.

 

No obstant això encara no n’hem vist cap prova convincent. Per què? Hi ha moltes respostes possibles, algunes una mica sinistres. Potser una sola civilització superintel·ligent ja haja dominat tota la galàxia i ha imposat un estricte silenci de ràdio perquè tem qualsevol competidor potencial. I tan sols espera, preparada per a neutralitzar qualsevol cosa que siga una amenaça. O potser no són tan intel·ligents, o potser l’evolució d’una intel·ligència capaç de crear tecnologia sofisticada és molt menys freqüent del que pensàvem. De fet, només ha passat una vegada a la Terra en quatre bilions d’anys. I potser això ha estat una sort increïble. Potser som la primera civilització d’eixe tipus a la nostra galàxia. O, potser la civilització comporta les llavors de la seua destrucció per la incapacitat de controlar les tecnologies que ha creat. Però hi ha moltes repostes més esperan-çadores. Per començar, no busquem gaire intensament, i hi invertim una miserable quantitat de diners. Només una petita fracció dels estels de la nostra galàxia han estat realment observats buscant-hi senyals interessants. I potser no estem buscant de la manera correcta. Potser a mesura que una civilització es desenvolupa, descobreix ràpidament tecnologies de comunicació més sofisticades i útils que les ones electromagnètiques. Potser tota la acció tinga lloc dins la misteriosa i recentment descoberta matèria fosca, o energia fosca, que sembla que forma la majoria de la massa de l’univers. O potser estem buscant a una escala incorrecta. Potser les civilitzacions intel·ligents s’adonaren que la vida tan sols són patrons d’informació complexos que interactuen entre ells d’una manera bella, i que això es pot produir més eficientment a petita escala. Com a la Terra els equips de música aparatosos s’han convertit en iPods petits i bufons, potser la vida intel·ligent, per reduir la seua empremta sobre l’entorn, ha esdevingut microscòpica. El Sistema Solar podria estar farcit d’extraterrestres, i simplement no els podem veure. Potser moltes de les idees que tenim al cap són formes de vida alienígena. D’acord, açò és una bogeria. Els extraterrestres m’han fet dir-ho. Però és apassionant que les idees semblin tindre vida pròpia i que sobre-visquin als seus creadors. Potser la vida biològica només és una fase transitòria. Dins dels propers 15 anys, podríem començar a veure informació espectroscòpica real dels planetes més propers i prometedors que en reveli en quina mesura poden albergar vida.

I mentre, SETI, (Búsqueda d’Inteligència Extraterrestre) fa pública la seua informació perquè milions de científics ciutadans, i tu mateix, puguin portar el poder de la multitud a aquesta recerca. I ací a la Terra, es fan experiments impressionants intentant crear vida des de zero, vida que podria ser diferent a les formes d’ADN que coneixem. Tot això ens ajudarà a comprendre si l’univers és farcit de vida o si, en realitat, estem sols. Qualsevol resposta, a la seua manera, ens meravellarà perquè, fins i tot si estem sols, el fet que pensem i somiem i ens fem aquestes preguntes podria convertir-se en un dels fets més importants de l’univers. I tinc una altra bona notícia. La recerca del coneixement i la comprensió mai es fa avorrida. Mai. Realment al contrari. Quant més saps, més impressionant sembla el món. I són les possibilitats esbojarrades, les preguntes sense respondre, el que ens empeny a avançar. Així que, manteniu-vos curiosos.

 

 


Fair use Notice: This website distributes this material without profit. This Information is for research and educational purposes. We believe this constitutes a fair use of any such copyrighted material as provided for in 17 U.S.C § 107.

New senses for humans

divendres, 16/11/2018

 David Eagleman  | Can we create new senses for humans?

As humans, we can perceive less than a ten-trillionth of all light waves. “Our experience of reality,” says neuroscientist David Eagleman, “is constrained by our biology.” He wants to change that. His research into our brain processes has led him to create new interfaces to take in previously unseen information about the world around us.

We are built out of very small stuff, and we are embedded in a very large cosmos, and the fact is that we are not very good at understanding reality at either of those scales, and that’s because our brains haven’t evolved to understand the world at that scale.
00:32
Instead, we’re trapped on this very thin slice of perception right in the middle. But it gets strange, because even at that slice of reality that we call home, we’re not seeing most of the action that’s going on. So take the colors of our world. This is light waves, electromagnetic radiation that bounces off objects and it hits specialized receptors in the back of our eyes. But we’re not seeing all the waves out there. In fact, what we see is less than a 10 trillionth of what’s out there. So you have radio waves and microwaves and X-rays and gamma rays passing through your body right now and you’re completely unaware of it, because you don’t come with the proper biological receptors for picking it up. There are thousands of cell phone conversations passing through you right now, and you’re utterly blind to it. Now, it’s not that these things are inherently unseeable.
Snakes include some infrared in their reality, and honeybees include ultraviolet in their view of the world, and of course we build machines in the dashboards of our cars to pick up on signals in the radio frequency range, and we built machines in hospitals to pick up on the X-ray range. But you can’t sense any of those by yourself, at least not yet, because you don’t come equipped with the proper sensors.
01:59
Now, what this means is that our experience of reality is constrained by our biology, and that goes against the common sense notion that our eyes and our ears and our fingertips are just picking up the objective reality that’s out there. Instead, our brains are sampling just a little bit of the world.
02:22
Now, across the animal kingdom, different animals pick up on different parts of reality. So in the blind and deaf world of the tick, the important signals are temperature and butyric acid; in the world of the black ghost knifefish, its sensory world is lavishly colored by electrical fields; and for the echolocating bat, its reality is constructed out of air compression waves. That’s the slice of their ecosystem that they can pick up on, and we have a word for this in science. It’s called the umwelt, which is the German word for the surrounding world. Now, presumably, every animal assumes that its umwelt is the entire objective reality out there, because why would you ever stop to imagine that there’s something beyond what we can sense. Instead, what we all do is we accept reality as it’s presented to us.
03:19
Let’s do a consciousness-raiser on this. Imagine that you are a bloodhound dog. Your whole world is about smelling. You’ve got a long snout that has 200 million scent receptors in it, and you have wet nostrils that attract and trap scent molecules, and your nostrils even have slits so you can take big nosefuls of air. Everything is about smell for you. So one day, you stop in your tracks with a revelation. You look at your human owner and you think, “What is it like to have the pitiful, impoverished nose of a human? (Laughter) What is it like when you take a feeble little noseful of air? How can you not know that there’s a cat 100 yards away, or that your neighbor was on this very spot six hours ago?” (Laughter)
04:10
So because we’re humans, we’ve never experienced that world of smell, so we don’t miss it, because we are firmly settled into our umwelt. But the question is, do we have to be stuck there? So as a neuroscientist, I’m interested in the way that technology might expand our umwelt, and how that’s going to change the experience of being human.
04:38
So we already know that we can marry our technology to our biology, because there are hundreds of thousands of people walking around with artificial hearing and artificial vision. So the way this works is, you take a microphone and you digitize the signal, and you put an electrode strip directly into the inner ear. Or, with the retinal implant, you take a camera and you digitize the signal, and then you plug an electrode grid directly into the optic nerve. And as recently as 15 years ago, there were a lot of scientists who thought these technologies wouldn’t work. Why? It’s because these technologies speak the language of Silicon Valley, and it’s not exactly the same dialect as our natural biological sense organs. But the fact is that it works; the brain figures out how to use the signals just fine.
05:31
Now, how do we understand that? Well, here’s the big secret: Your brain is not hearing or seeing any of this. Your brain is locked in a vault of silence and darkness inside your skull. All it ever sees are electrochemical signals that come in along different data cables, and this is all it has to work with, and nothing more. Now, amazingly, the brain is really good at taking in these signals and extracting patterns and assigning meaning, so that it takes this inner cosmos and puts together a story of this, your subjective world.
But here’s the key point: Your brain doesn’t know, and it doesn’t care, where it gets the data from. Whatever information comes in, it just figures out what to do with it. And this is a very efficient kind of machine. It’s essentially a general purpose computing device, and it just takes in everything and figures out what it’s going to do with it, and that, I think, frees up Mother Nature to tinker around with different sorts of input channels.
06:49
So I call this the P.H. model of evolution, and I don’t want to get too technical here, but P.H. stands for Potato Head, and I use this name to emphasize that all these sensors that we know and love, like our eyes and our ears and our fingertips, these are merely peripheral plug-and-play devices: You stick them in, and you’re good to go. The brain figures out what to do with the data that comes in. And when you look across the animal kingdom, you find lots of peripheral devices. So snakes have heat pits with which to detect infrared, and the ghost knifefish has electroreceptors, and the star-nosed mole has this appendage with 22 fingers on it with which it feels around and constructs a 3D model of the world, and many birds have magnetite so they can orient to the magnetic field of the planet. So what this means is that nature doesn’t have to continually redesign the brain. Instead, with the principles of brain operation established, all nature has to worry about is designing new peripherals.
08:01
Okay. So what this means is this: The lesson that surfaces is that there’s nothing really special or fundamental about the biology that we come to the table with. It’s just what we have inherited from a complex road of evolution. But it’s not what we have to stick with, and our best proof of principle of this comes from what’s called sensory substitution. And that refers to feeding information into the brain via unusual sensory channels, and the brain just figures out what to do with it.
08:35
Now, that might sound speculative, but the first paper demonstrating this was published in the journal Nature in 1969. So a scientist named Paul Bach-y-Rita put blind people in a modified dental chair, and he set up a video feed, and he put something in front of the camera, and then you would feel that poked into your back with a grid of solenoids. So if you wiggle a coffee cup in front of the camera, you’re feeling that in your back, and amazingly, blind people got pretty good at being able to determine what was in front of the camera just by feeling it in the small of their back. Now, there have been many modern incarnations of this. The sonic glasses take a video feed right in front of you and turn that into a sonic landscape, so as things move around, and get closer and farther, it sounds like “Bzz, bzz, bzz.” It sounds like a cacophony, but after several weeks, blind people start getting pretty good at understanding what’s in front of them just based on what they’re hearing. And it doesn’t have to be through the ears: this system uses an electrotactile grid on the forehead, so whatever’s in front of the video feed, you’re feeling it on your forehead. Why the forehead? Because you’re not using it for much else.
09:51
The most modern incarnation is called the brainport, and this is a little electrogrid that sits on your tongue, and the video feed gets turned into these little electrotactile signals, and blind people get so good at using this that they can throw a ball into a basket, or they can navigate complex obstacle courses. They can come to see through their tongue. Now, that sounds completely insane, right? But remember, all vision ever is is electrochemical signals coursing around in your brain. Your brain doesn’t know where the signals come from. It just figures out what to do with them.
10:34
So my interest in my lab is sensory substitution for the deaf, and this is a project I’ve undertaken with a graduate student in my lab, Scott Novich, who is spearheading this for his thesis. And here is what we wanted to do: we wanted to make it so that sound from the world gets converted in some way so that a deaf person can understand what is being said. And we wanted to do this, given the power and ubiquity of portable computing, we wanted to make sure that this would run on cell phones and tablets, and also we wanted to make this a wearable, something that you could wear under your clothing. So here’s the concept. So as I’m speaking, my sound is getting captured by the tablet, and then it’s getting mapped onto a vest that’s covered in vibratory motors, just like the motors in your cell phone. So as I’m speaking, the sound is getting translated to a pattern of vibration on the vest. Now, this is not just conceptual: this tablet is transmitting Bluetooth, and I’m wearing the vest right now. So as I’m speaking — (Applause) — the sound is getting translated into dynamic patterns of vibration. I’m feeling the sonic world around me.
12:01
So, we’ve been testing this with deaf people now, and it turns out that after just a little bit of time, people can start feeling, they can start understanding the language of the vest.
12:14
So this is Jonathan. He’s 37 years old. He has a master’s degree. He was born profoundly deaf, which means that there’s a part of his umwelt that’s unavailable to him. So we had Jonathan train with the vest for four days, two hours a day, and here he is on the fifth day.Scott Novich: You.
David Eagleman: So Scott says a word, Jonathan feels it on the vest, and he writes it on the board.
SN: Where. Where.
DE: Jonathan is able to translate this complicated pattern of vibrations into an understanding of what’s being said.
SN: Touch. Touch.
DE: Now, he’s not doing this — (Applause) — Jonathan is not doing this consciously, because the patterns are too complicated, but his brain is starting to unlock the pattern that allows it to figure out what the data mean, and our expectation is that, after wearing this for about three months, he will have a direct perceptual experience of hearing in the same way that when a blind person passes a finger over braille, the meaning comes directly off the page without any conscious intervention at all. Now, this technology has the potential to be a game-changer, because the only other solution for deafness is a cochlear implant, and that requires an invasive surgery. And this can be built for 40 times cheaper than a cochlear implant, which opens up this technology globally, even for the poorest countries.
14:00
Now, we’ve been very encouraged by our results with sensory substitution, but what we’ve been thinking a lot about is sensory addition. How could we use a technology like this to add a completely new kind of sense, to expand the human umvelt? For example, could we feed real-time data from the Internet directly into somebody’s brain, and can they develop a direct perceptual experience?
14:27
So here’s an experiment we’re doing in the lab. A subject is feeling a real-time streaming feed from the Net of data for five seconds. Then, two buttons appear, and he has to make a choice. He doesn’t know what’s going on. He makes a choice, and he gets feedback after one second. Now, here’s the thing: The subject has no idea what all the patterns mean, but we’re seeing if he gets better at figuring out which button to press. He doesn’t know that what we’re feeding is real-time data from the stock market, and he’s making buy and sell decisions. (Laughter) And the feedback is telling him whether he did the right thing or not. And what we’re seeing is, can we expand the human umvelt so that he comes to have, after several weeks, a direct perceptual experience of the economic movements of the planet. So we’ll report on that later to see how well this goes. (Laughter)
Here’s another thing we’re doing: During the talks this morning, we’ve been automatically scraping Twitter for the TED2015 hashtag, and we’ve been doing an automated sentiment analysis, which means, are people using positive words or negative words or neutral? And while this has been going on, I have been feeling this, and so I am plugged in to the aggregate emotion of thousands of people in real time, and that’s a new kind of human experience, because now I can know how everyone’s doing and how much you’re loving this. (Laughter) (Applause) It’s a bigger experience than a human can normally have.
16:11
We’re also expanding the umvelt of pilots. So in this case, the vest is streaming nine different measures from this quadcopter, so pitch and yaw and roll and orientation and heading, and that improves this pilot’s ability to fly it. It’s essentially like he’s extending his skin up there, far away.
16:33
Andl that’s just the beginning. What we’re envisioning is taking a modern cockpit full of gauges and instead of trying to read the whole thing, you feel it. We live in a world of information now, and there is a difference between accessing big data and experiencing it.
16:54
So I think there’s really no end to the possibilities on the horizon for human expansion. Just imagine an astronaut being able to feel the overall health of the International Space Station, or, for that matter, having you feel the invisible states of your own health, like your blood sugar and the state of your microbiome, or having 360-degree vision or seeing in infrared or ultraviolet.
17:23
So the key is this: As we move into the future, we’re going to increasingly be able to choose our own peripheral devices. We no longer have to wait for Mother Nature’s sensory gifts on her timescales, but instead, like any good parent, she’s given us the tools that we need to go out and define our own trajectory. So the question now is, how do you want to go out and experience your universe?Thank you.(Applause)
Chris Anderson: Can you feel it?
DE: Yeah.Actually, this was the first time I felt applause on the vest. It’s nice. It’s like a massage. (Laughter)
CA: Twitter’s going crazy. Twitter’s going mad. So that stock market experiment. This could be the first experiment that secures its funding forevermore, right, if successful?
DE: Well, that’s right, I wouldn’t have to write to NIH anymore.
CA: Well look, just to be skeptical for a minute, I mean, this is amazing, but isn’t most of the evidence so far that sensory substitution works, not necessarily that sensory addition works? I mean, isn’t it possible that the blind person can see through their tongue because the visual cortex is still there, ready to process, and that that is needed as part of it?
18:55
DE: That’s a great question. We actually have no idea what the theoretical limits are of what kind of data the brain can take in. The general story, though, is that it’s extraordinarily flexible. So when a person goes blind, what we used to call their visual cortex gets taken over by other things, by touch, by hearing, by vocabulary. So what that tells us is that the cortex is kind of a one-trick pony. It just runs certain kinds of computations on things. And when we look around at things like braille, for example, people are getting information through bumps on their fingers. So I don’t think we have any reason to think there’s a theoretical limit that we know the edge of.
19:33
CA: If this checks out, you’re going to be deluged. There are so many possible applications for this. Are you ready for this? What are you most excited about, the direction it might go?
DE: I mean, I think there’s a lot of applications here. In terms of beyond sensory substitution, the things I started mentioning about astronauts on the space station, they spend a lot of their time monitoring things, and they could instead just get what’s going on, because what this is really good for is multidimensional data. The key is this: Our visual systems are good at detecting blobs and edges, but they’re really bad at what our world has become, which is screens with lots and lots of data. We have to crawl that with our attentional systems. So this is a way of just feeling the state of something, just like the way you know the state of your body as you’re standing around. So I think heavy machinery, safety, feeling the state of a factory, of your equipment, that’s one place it’ll go right away.
CA: David Eagleman, that was one mind-blowing talk. Thank you very much.
DE: Thank you, Chris.
(Applause)
Estamos hechos de cosas muy pequeñas, e inmersos en un gran cosmos, y no entendemos bien la realidad de ninguna de esas escalas, y eso se debe a que el cerebro no ha evolucionado para entender el mundo en esa escala.
00:32
En cambio estamos atrapados justo en medio de ese delgado  tramo de percepción. Pero es extraño porque incluso en esa porción de realidad que llamamos hogar no vemos gran parte de la acción que ocurre. Veamos los colores del mundo. Se trata de ondas de luz, radiación electromagnética que rebota en los objetos y golpea receptores especializados en la parte posterior de los ojos. Pero no vemos todas las ondas que existen. De hecho, vemos menos de una diez billonésima parte de lo que existe. Hay ondas de radio, microondas rayos X y rayos gamma que atraviesan nuestros cuerpos ahora mismo y no somos conscientes de eso, porque no tenemos los receptores biológicos adecuados para detectarlos. Hay miles de conversaciones de teléfonos móviles y estamos completamente ciegos a eso. Pero no es que estas cosas sean inherentemente invisibles.
Las serpientes perciben rayos infrarrojos las abejas rayos ultravioletas, y, claro, construímos máquinas en los tableros de nuestros autos para capturar señales en el rango de frecuencias de radio, y construímos máquinas en hospitales para capturar rayos X. Pero no los podemos percibir, al menos no todavía, porque no venimos equipados con los sensores adecuados.
01:59
Esto significa que nuestra experiencia de la realidad se ve limitada por nuestra biología, y eso va en contra de la noción del sentido común de que la vista, el oído y el tacto apenas percibe la realidad objetiva circundante. En cambio, el cerebro solo percibe una pequeña parte del mundo.
02:22
Bien, en todo el reino animal, distintos animales perciben diferentes partes de la realidad. Así, en el mundo ciego y sordo de la garrapata, las señales importantes son la temperatura y el ácido butírico; en el mundo del pez cuchillo, su ambiente sensorial es profusamente coloreado por campos eléctricos; y para el murciélago su mundo está compuesto por ondas de aire comprimido. Esa es la parte del ecosistema que pueden captar, y en ciencia tenemos una palabra para esto, es “umwelt“, término alemán para denominar el mundo circundante. Al parecer los animales suponen que su umwelt es toda la realidad objetiva circundante, ya que por qué dejaríamos de imaginar que existe algo más de lo que podemos percibir. En cambio, nosotros aceptamos la realidad tal como se nos presenta.
03:19
Hagamos de esto un despertar de conciencia. Imaginen que somos un perro sabueso. Nuestro mundo gira en torno al olfato. Tenemos un morro largo con 200 millones de receptores olfativos, hocicos húmedos que atraen y atrapan moléculas de olor, y fosas nasales que tienen hendiduras para inspirar grandes cantidades de aire. Todo gira en torno al olfato. Un día tenemos una revelación. Miramos a nuestro dueño humano y pensamos: “¿Cómo debe ser tener esa lamentable nariz humana tan empobrecida? (Risas) ¿Qué se sentirá al inspirar pequeñas y débiles cantidades de aire? ¿Cómo será no saber que hay un gato a 90 m de distancia, o que tu vecino estuvo aquí mismo hace 6 horas?”(Risas)
04:10
Como somos humanos nunca hemos experimentado ese mundo del olfato, por eso no lo añoramos, porque estamos cómodos en nuestro umwelt. Pero la pregunta es, ¿debemos quedar atrapados en él? Como neurólogo, me interesa ver de qué forma la tecnología podría expandir nuestro umwelt, y cómo eso podría cambiar la experiencia de ser humano.
04:38
Ya sabemos que podemos conjugar tecnología y biología porque hay cientos de miles de personas que andan por allí con oído y vista artificiales. Eso funciona así, se pone un micrófono, se digitaliza la señal y se coloca una tira de electrodos directamente en el oído interno. O, con el implante de retina, se coloca una cámara se digitaliza la señal, y luego se enchufa una tira de electrodos directamente en el nervio óptico. Hace apenas 15 años muchos científicos pensaban que estas tecnologías no funcionarían. ¿Por qué? Estas tecnologías hablan la lengua de Silicon Valley, y esta no es exactamente la misma que la de nuestros órganos sensoriales biológicos, pero funcionan. El cerebro se las ingenia para usar las señales.
05:31
¿Cómo podemos entender eso? Este es el gran secreto. El cerebro ni oye, ni ve esto. El cerebro está encerrado en una bóveda en silencio y oscuridad en el cráneo. Solo ve señales electroquímicas que vienen en diferentes cables de datos, solo trabaja con esto, nada más. Sorprendentemente, el cerebro es muy bueno para captar estas señales extraer patrones y darle significado, así, con este cosmos interior, elabora una historia y, de ahí, nuestro mundo subjetivo.
Pero aquí está el secreto. El cerebro ni sabe, ni le importa de dónde vienen los datos. De cualquier información que llega sabe descifrar, qué hacer con ella. Es una máquina muy eficiente. Básicamente se trata de un dispositivo de computación de propósito general, sencillamente recibe todo y se da cuenta qué hacer con eso, y eso, creo yo, libera a la Madre Naturaleza para probar distintos canales de entrada.
06:49
Así que llamo a esto modelo evolutivo PH, no quiero entrar en detalles técnicos, PH significa “Potato Head” y uso este nombre para resaltar que todos estos sensores que conocemos y amamos, como la vista, el oído y el tacto, son solo dispositivos periféricos enchufables: se enchufan y funcionan. El cerebro determina qué hacer con los datos que recibe. Si analizamos el reino animal, encontramos muchos periféricos. Las serpientes tienen hoyos de calor para detectar infrarrojos, y el pez cuchillo tiene electrorreceptores, y el topo de nariz estrellada tiene este apéndice con 22 dedos con los que percibe y construye un modelo 3D del mundo, y muchas aves tienen magnetita para orientarse hacia campo magnético del planeta. Esto significa que la naturaleza no tiene que rediseñar continuamente al cerebro. En cambio, establecidos los principios de la operación del cerebro, la naturaleza solo tiene que diseñar nuevos periféricos.
08:01
Bién, esto significa lo siguiente: La lección que surge es que no hay nada realmente especial o fundamental en la biología que traemos. Es lo que hemos heredado a partir de un complejo camino evolutivo. Pero no tenemos por qué limitarnos a eso, y la mejor prueba de ese principio viene de lo que se llama “sustitución sensorial”. Se refiere a la información de entrada en el cerebro por canales sensoriales inusuales; el cerebro entiende qué hacer con ella.
08:35
Esto puede sonar a especulación, pero el primer trabajo que demuestra esto se publicó en la revista Nature en 1969. Un científico llamado Paul Bach-y-Rita puso ciegos en una silla dentada modificada, configuró un canal de video, y puso algo en frente de la cámara, para luego sentir una señal táctil en la espalda mediante una red de solenoides. Si uno mueve una taza de café frente a la cámara, uno la siente en la espalda, y, sorprendentemente, los ciegos tienen buen desempeño detectando qué hay frente a la cámara mediante vibraciones en la parte baja de la espalda. Ha habido muchas implementaciones modernas de esto. Las gafas sónicas toman un canal de video del frente y lo convierten en un paisaje sonoro, y conforme las cosas se mueven, se acercan y se alejan, hace un sonido “bzz, bzz, bzz”. Suena como una cacofonía, pero después de varias semanas, los ciegos empiezan a entender bastante bien qué tienen enfrente a partir de lo que escuchan. Y no tiene por qué ser por los oídos: este sistema usa una rejilla electrotáctil en la frente, para sentir en la frente lo que esté frente a la entrada de video, ¿Por qué la frente? Porque no se usa para mucho más.
09:51
La implementación más moderna se llama “brainport” y es una rejillita eléctrica ubicada en la lengua, la señal de video se convierte en pequeñas señales electrotáctiles, y los ciegos lo usan tan bien que pueden arrojar pelotas en una cesta, o pueden realizar carreras de obstáculos complejos. Pueden ver con la lengua. ¿Parece de locos, verdad? Pero recuerden que la visión siempre son señales electroquímicas que recorren el cerebro. El cerebro no sabe de dónde vienen las señales. Se da cuenta qué hacer con ellas.
10:34
Por eso el interés de mi laboratorio es la “sustitución sensorial” en sordos, y este es el proyecto que realizamos con un estudiante de posgrado en mi laboratorio, Scott Novich, que encabeza esto en su tesis. Esto es lo que queríamos hacer: queríamos hacerlo convirtiendo el sonido del mundo de alguna forma para que un sordo pudiera entender lo que se dice. Y queríamos hacerlo, dado el poder y ubicuidad de la informática portátil, queríamos asegurarnos de que ejecutase en teléfonos móviles y tabletas, y también queríamos hacerlo portátil, algo que pudiéramos usar debajo de la ropa. Este es el concepto. Conforme hablo, una tableta capta mi sonido, y luego es mapeado en un chaleco cubierto con motores vibratorios, como los motores de sus móviles. Conforme hablo, el sonido se traduce en patrones de vibración en el chaleco. Esto no es solo un concepto: esta tableta transmite vía Bluetooth, y ahora mismo tengo uno de esos chalecos. Conforme hablo… (Aplausos) el sonido se traduce en patrones dinámicos de vibración. Siento el mundo sonoro a mi alrededor.
12:01
Lo hemos estado probando con personas sordas, y resulta que solo un tiempo después, la gente puede empezar a sentir, a entender el lenguaje del chaleco.
12:14
Este es Jonathan. Tiene 37 años. Tiene un título de maestría. Nació con sordera profunda, por eso hay una parte de su umwelt que está fuera de su alcance. Tuvimos que entrenar a Jonathan con el chaleco durante 4 días, 2 horas al día, y aquí está en el quinto día.
Scott Novich: tú.
David Eagleman: Scott dice una palabra, Jonathan la siente en el chaleco, y la escribe en la pizarra.
SN: Dónde. Dónde.
DE: Jonathan puede traducir este complicado patrón de vibraciones en una comprensión de lo que se dice.
SN: Toca. Toca.
DE: Pero no lo está… (Aplausos) Jonathan no lo hace conscientemente, porque los patrones son muy complicados, pero su cerebro está empezando a desbloquear el patrón que le permite averiguar qué significan los datos, y esperamos que en unos 3 meses de usar el chaleco, tenga una experiencia de percepción de escuchar como la que tiene de la lectura un ciego que pasa un dedo sobre texto en braille, el significado viene de inmediato sin intervención consciente en absoluto. Esta tecnología tiene el potencial de un cambio importante, porque la única solución alternativa a la sordera es un implante coclear, que requiere una cirugía invasiva. Construir esto es 40 veces más barato que un implante coclear, permite ofrecer esta tecnología al mundo, incluso a los países más pobres.
14:00
Nos animan mucho los resultados obtenidos con la “sustitución sensorial”, pero hemos estado pensando mucho en la “adición sensorial”. ¿Cómo podríamos usar una tecnología como esta para añadir un nuevo sentido, para ampliar el umvelt humano? Por ejemplo, ¿podríamos ingresar datos en tiempo real de Internet en el cerebro de alguien? Ese alguien ¿puede desarrollar una experiencia perceptiva directa?
14:27
Este es un experimento que hacemos en el laboratorio. Un sujeto siente en tiempo real datos de la Red durante 5 segundos. Luego, aparecen dos botones, y tiene que hacer una elección. No sabe qué está pasando. Hace una elección, y tiene respuesta después de un segundo. Es así: El sujeto no tiene idea del significado de los patrones, pero vemos si mejora en la elección de qué botón presionar. No sabe que los datos que le ingresamos son datos bursátiles en tiempo real, y está decidiendo comprar y vender. (Risas) La respuesta le dice si tomó una buena decisión o no. Estamos viendo si podemos expandir el umwelt humano una experiencia perceptiva directa de los movimientos económicos del planeta. Informaremos de eso más adelante para ver cómo resulta.(Risas)Otra cosa que estamos haciendo: Durante las charlas de la mañana, filtramos automáticamente en Twitter con el hashtag TED2015, e hicimos un análisis automatizado de sentimientos es decir, ¿las personas usaron palabras positivas, negativas o neutras? Y mientras esto sucedía lo he estado sintiendo, estoy enchufado a la emoción consolidada de miles de personas en tiempo real, es un nuevo tipo de experiencia humana, porque ahora puedo saber cómo le va a los oradores y cuánto les gusta esto a Uds. (Risas) (Aplausos) Es una experiencia más grande de la que un ser humano normal puede tener.
16:11
También estamos ampliando el umwelt de los pilotos. En este caso, el chaleco transmite 9 métricas diferentes desde este cuadricóptero, cabeceo, guiñada, giro, orientación y rumbo, y eso mejora la destreza del piloto. Es como si extendiera su piel, a lo lejos.
16:33
Y eso es solo el principio. Estamos previendo tomar una cabina moderna llena de manómetros y en vez de tratar de leer todo eso, sentirlo. Ahora vivimos en un mundo de información, y hay una diferencia entre acceder a grandes volúmenes de datos y experimentarlos.
16:54
Así que creo que en realidad las posibilidades no tienen fin en el horizonte de la expansión humana. Imaginen un astronauta que pueda sentir la salud general de la Estación Espacial Internacional, o, para el caso, que Uds. sientan los estados invisibles de su propia salud, como el nivel de azúcar en sangre y el estado del microbioma, o tener visión de 360º o ver en el infrarrojo o ultravioleta.
17:23
La clave es esta: conforme avanzamos hacia el futuro, cada vez podremos elegir nuestros propios dispositivos periféricos. Ya no tenemos que esperar regalos sensoriales de la Madre Naturaleza en sus escalas de tiempo, pero en su lugar, como buena madre, nos ha dado las herramientas necesarias para hacer nuestro propio camino. Así que la pregunta ahora es: ¿cómo quieren salir a experimentar su univer Gracias. (Aplausos)
Chris Anderson: ¿Puedes sentirlo?
DE: Sí.En realidad, es la primera vez que siento aplausos en el chaleco. Es agradable. Es como un masaje. (Risas)
CA: Twitter se vuelve loco. El experimento del mercado de valores, ¿podría ser el primer experimento que asegure su financiación para siempre, de tener éxito?
DE: Bueno, es cierto, ya no tendría que escribirle al NIH.
CA: Bueno mira, para ser escéptico por un minuto, digo, es asombroso, pero ¿hay evidencia hasta el momento de que funcione la sustitución sensorial, o la adición sensorial? ¿No es posible que el ciego pueda ver por la lengua porque la corteza visual está todavía allí, lista para procesar, y que eso sea una parte necesaria?
18:55
DE: Gran pregunta. En realidad no tenemos ni idea de cuáles son los límites teóricos de los datos que puede asimilar el cerebro. La historia general, sin embargo, es que es extraordinariamente flexible. Cuando una persona queda ciega, lo que llamamos corteza visual es ocupada por el tacto, el oído, el vocabulario. Eso nos dice que la corteza es acotada. Solo hace ciertos tipos de cálculos sobre las cosas. Y si miramos a nuestro alrededor las cosas como el braille, por ejemplo, las personas reciben información mediante golpes en los dedos. No creo que haya razón para pensar que existe un límite teórico, que conozcamos ese límite.
19:33
CA: Si esto se comprueba, estarás abrumado. Hay muchas aplicaciones posibles para esto. ¿Estás listo para esto? ¿Qué es lo que más te entusiasma? ¿Qué se podría lograr?DE: Creo que hay gran cantidad de aplicaciones aquí. En términos de sustitución sensorial del mañana, algo empecé a mencionar de astronautas en la estación espacial, que pasan mucho tiempo controlando cosas y podrían en cambio ver que está pasando, porque esto es bueno para datos multidimensionales. La clave es: nuestros sistemas visuales son buenos detectando manchas y bordes, pero son muy malos para el mundo actual, con pantallas que tienen infinidad de datos. Tenemos que rastrear eso con nuestros sistemas de atención. Esta es una manera de solo sentir el estado de algo, como conocer el estado del cuerpo sobre la marcha. La maquinaria pesada, la seguridad, sentir el estado de una fábrica, de un equipo, hacia allí va en lo inmediato.
CA: David Eagleman, fue una charla alucinante. Muchas gracias.
DE: Gracias, Chris. (Aplausos)

 


David Eagleman (born April 25, 1971) is an American writer and neuroscientist, teaching at Stanford University.




 

 TED (Technology, Entertainment and Design) és una societat de responsabilitat limitada estatunidenca que organitza un conjunt de conferències seguint el seu lema ideas worth spreading («idees que val la pena difondre»). La societat és propietat de la fundació sense ànim de lucre Sapling Foundation.